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Abstract— In the centralized robust multi-sensor recursive least-square (RLS) Wiener filtering algorithm, the 
number of recursive equations increases compared to that of the centralized multi-sensor RLS Wiener filter in 
linear discrete-time stationary stochastic systems with uncertain parameters. Due to the increase in the number of 
recursive Riccati-type algebraic equations, the accumulation of round-off errors is not negligible. The round-off 
errors cause unstable numerical characteristics of the filter, especially for the small variance of the observation 
noise. To reduce the round-off errors - as the first attempt in the research field of centralized robust multi-sensor 
estimation - this paper designs the Chandrasekhar-type centralized robust multi-sensor RLS Wiener filter, which 
updates the filter gains recursively. To verify the effectiveness of the proposed filter, a numerical simulation 
example is demonstrated and its estimation accuracy is compared with the centralized robust multi-sensor RLS 
Wiener filter and the centralized multi-sensor RLS-Wiener filter. The obtained results show that the proposed 
filter exhibits better stability. 
 
Keywords— Chandrasekhar-type centralized robust RLS Wiener filter; Multi-sensor information fusion; Base 
station; Autoregressive model; Uncertain stochastic systems.   
     

1. INTRODUCTION  

Recently, robust recursive least-squares (RLS) Wiener estimators for linear discrete-

time stationary stochastic systems with uncertain parameters have been proposed [1-5]. The 

estimators do not use the information about the uncertain parameters in the system and 

observation matrices at all, and they are also applicable to the system with randomly delayed 

observations [4]. Nakamori proposed a robust extended RLS Wiener filter and fixed-point 

smoother in discrete-time stationary stochastic systems [6]. In [7], distributed fusion 

estimation algorithms for multi-sensor networked systems are reviewed. In [8], the problem 

of distributed weighted robust Kalman filter fusion is studied in a class of uncertain systems 

with correlated noises. It is assumed that the system matrix includes zero-mean 

multiplicative noise with unity variance. In [9-11], the weighted fusion robust time-varying 

Kalman predictor, filter, and smoother are designed for multi-sensor time-varying systems 

with uncertainties of noise variances under the condition that the upper bounds of noise 

variances are given. In [12], the optimal centralized fusion filter, predictor, and smoother are 

presented in the linear minimum variance sense. It is assumed that correlated multiplicative 

noises exist in the state and observation matrices and their covariance data are known. In 

[13], robust centralized fusion and weighted measurement fusion Kalman estimators are 

designed for uncertain multi-sensor systems. The system matrix contains multiplicative 

uncertainty with known variance. The observation equation contains mutually uncorrelated 

scalar Bernoulli random variables with known probability. Upper bounds of the input and 

observation noise variances are known. In [14], centralized fusion of unscented Kalman filter 
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is proposed based on the Huber robust method for nonlinear moving target tracking. 

Recently, Nakamori introduced the centralized robust multi-sensor RLS Wiener filter and 

fixed-point smoother in linear discrete-time stochastic systems with uncertain parameters 

[15]. In the case of the centralized robust multi-sensor RLS Wiener estimators in [8-13], the 

uncertain information about the state and observation equations is not required. 

In the numerical simulation example - presented in this paper in section 6 - the mean-

square values (MSVs) of the filtering errors by the centralized robust multi-sensor RLS 

Wiener filter are large for the white Gaussian observation noises, N(0,0. 22) and N(0,0. 32), 

respectively. The main reason the centralized robust RLS Wiener filter becomes unstable for 

multiple sensors is that 𝑆0(𝑘), updated by the algebraic Riccati equations, becomes indefinite 

(e. g. 𝑆0(𝑘) < 0). This instability could be caused by the accumulation of the round-off errors 

in computing the Riccati equations for the symmetric matrix 𝑆0(𝑘) . 𝑆0(𝑘)  containing            

𝑁 ∙ 𝑀 ∙ 𝑚 × 𝑁 ∙ 𝑀 ∙ 𝑚 equations (see section 4). This number is proportional to the square of 

the number of multi-sensor measurement points 𝑚.  

In order to reduce the accumulation of the round-off errors, this paper proposes the 

Chandrasekhar-type centralized robust multi-sensor RLS Wiener filter in Theorem 1. The 

filter is considered the first attempt in the research field of centralized robust multi-sensor 

estimation. In Theorem 1, the filter gains ℎ(𝑘, 𝑘)  for 𝑥(𝑘, 𝑘)  and ℎ̅(𝑘, 𝑘)  for 𝑥(𝑘, 𝑘)  are 

recursively updated by Eqs. (14) and (16), respectively without including algebraic Riccati 

equations. Moreover, the numerical simulation example shows that the Chandrasekhar-type 

centralized robust multi-sensor RLS Wiener filter of Theorem 1 is stable for the relatively 

small variance of the white Gaussian observation noise compared to the centralized robust 

multi-sensor RLS Wiener filter [15]. The MSVs of the filtering errors by the centralized robust 

multi-sensor RLS Wiener filter of Chandrasekhar type are smaller than those of the filtering 

errors by the centralized robust multi-sensor RLS Wiener filter and the centralized multi-

sensor RLS Wiener filter for the white Gaussian observation noises N(0,0. 22) and N(0,0. 32), 

respectively. For the relatively small variance of the observation noise, the centralized robust 

multi-sensor RLS Wiener filter of Chandrasekhar-type is effective from the viewpoint of 

estimation accuracy against the instability of the centralized robust multi-sensor RLS Wiener 

filter. 

The rest of this paper is organized as following: section 2 introduces the problem of 

robust estimation for centralized multi-sensor information fusion in wide-sense stationary 

stochastic systems. In section 3, Theorem 1 proposes the centralized robust multi-sensor RLS 

Wiener filtering algorithm of Chandrasekhar type; Theorem 2 introduces the centralized 

robust multi-sensor RLS Wiener filtering algorithm [15] and Theorem 3 introduces the 

centralized multi-sensor RLS Wiener filtering algorithm [16]. Regarding the centralized robust 

multi-sensor RLS Wiener filter of Chandrasekhar type, section 4 proposes the recursive 

algorithm for the filtering error variance function of the state and shows the existence of its 

filtering estimate. Section 5 demonstrates a numerical simulation example. 
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2. DEGRADED SIGNALS IN LINEAR MULTI-SENSOR WIDE-SENSE STATIONARY 
STOCHASTIC SYSTEMS 

In linear discrete-time wide-sense stationary stochastic systems, let the multi-sensor 

signals, z𝑖(𝑘), 𝑖 = 1,2, ⋯ 𝑚 , be observed at the local stations with additional observation 

noises 𝑣𝑖(𝑘) for the state equation for 𝑥(𝑘), given by Eq. (1). 

 𝑦𝑖(𝑘) = 𝑧𝑖(𝑘) + 𝑣𝑖(𝑘), 𝑧𝑖(𝑘) = 𝐻𝑖𝑥(𝑘), 𝑖 = 1,2, ⋯ 𝑚,

 𝑦(𝑘) = 𝑧(𝑘) + 𝑣(𝑘),

𝑦(𝑘) = [

𝑦1(𝑘)

𝑦2(𝑘)
⋮

𝑦𝑚(𝑘)

] , 𝑧(𝑘) = 𝐻𝑥(𝑘) = [

𝑧1(𝑘)

𝑧2(𝑘)
⋮

𝑧𝑚(𝑘)

] , 𝐻 = [

𝐻1

𝐻2

⋮
𝐻𝑚

] , 𝑣(𝑘) = [

𝑣1(𝑘)

𝑣2(𝑘)
⋮

𝑣𝑚(𝑘)

] ,

𝐸[𝑣𝑖(𝑘)𝑣𝑖
𝑇(𝑠)] = 𝑅𝑖𝛿𝐾(𝑘 − 𝑠), 𝐸[𝑣𝑖(𝑘)𝑣𝑗

𝑇(𝑠)] = 0, 𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1,2, ⋯ 𝑚,

𝐸[𝑣(𝑘)𝑣𝑇(𝑠)] = 𝑅𝛿𝐾(𝑘 − 𝑠), 𝑅 =

[
 
 
 
 
𝑅1 0 ⋯ 0 0
0 𝑅2 ⋯ 0 0
⋮
0
0

⋮
0
0

⋱
⋯
⋯

⋮
𝑅𝑚−1

0

⋮
0

𝑅𝑚]
 
 
 
 

,

𝑥(𝑘 + 1) = Φ𝑥(𝑘) + Γ𝑤(𝑘), 𝐸[𝑤(𝑘)𝑤𝑇(𝑠)] = 𝑄𝛿𝐾(𝑘 − 𝑠) 

         (1) 

Here, 𝑧(𝑘) : 𝑚 ∙ 𝑀 × 1  signal vector with components of m  multi-sensor signals 𝑧𝑖(𝑘) ; 

𝑖 = 1,2, ⋯ 𝑚 ; 𝐻𝑖 : M × n  observation matrix; 𝑥(𝑘):  𝑛 × 1  state vector to be estimated;            

𝑣𝑖(𝑘):  zero-mean white observation noise with variance R𝑖 ; Φ:  state transition matrix;      

𝑤(𝑘): white input noise with variance Q; Γ: 𝑛 × 𝑙 input matrix. The notations 𝑦(𝑘), 𝑧(𝑘) and 

𝑣(𝑘) stand for the stacked vectors of 𝑦𝑖(𝑘), 𝑧𝑖(𝑘) and 𝑣𝑖(𝑘) vectors, 𝑖 = 1,2, ⋯ 𝑚, respectively. 

The auto-covariance function of 𝑣(𝑘) is given in Eq. (1). Let the processes of the signals 𝑧𝑖(𝑘) 

and the observation noises 𝑣𝑖(𝑘) be independent of each other. Now, let the degraded multi-

sensor observations 𝑦̆𝑖(𝑘), i = 1,2, … , m, be generated by the state-space model with uncertain 

quantities ∆Φ(𝑘) in the system matrix and ∆H𝑖(k) in the observation matrices. Let 𝑦̆𝑖(𝑘), 

𝑖 = 1,2, ⋯ 𝑚, be given as the sum of the degraded signal 𝑧̆𝑖(𝑘) and the white observation 

noise 𝑣𝑖(𝑘) at the 𝑖𝑡ℎ sensor. 

𝑦̆𝑖(𝑘) = 𝑧̆𝑖(𝑘) + 𝑣𝑖(𝑘), 𝑧̆𝑖(𝑘) = 𝐻̆𝑖(𝑘)𝑥̆(𝑘),

𝑥̆(𝑘 + 1) = Φ̆(𝑘)𝑥̆(𝑘) + Γ𝑤(𝑘),

Φ̆(𝑘) = Φ + ∆Φ(𝑘), 𝐻̆𝑖(𝑘) = 𝐻𝑖 + ∆H𝑖(𝑘), i = 1, … , m

              (2) 

Let 𝑦̆(𝑘)  and 𝑧̆(𝑘)  be the stacked vectors of 𝑦̆𝑖(𝑘)  and 𝑧̆𝑖(𝑘) , 𝑖 = 1,2, ⋯ 𝑚 . Then the 

observation equations - represented in Eq. (2) - are expressed with the stacked vectors as: 

     𝑦̆(𝑘) = 𝑧̆(𝑘) + 𝑣(𝑘), 

𝑦̆(𝑘) = [

𝑦̆1(𝑘)
𝑦̆2(𝑘)

⋮
𝑦̆𝑚(𝑘)

]

 

, 𝑧̆(𝑘) = [

𝑧̆1(𝑘)

𝑧̆2(𝑘)
⋮

𝑧̆𝑚(𝑘)

].            (3) 

Suppose the process of the degraded multi-sensor signal 𝑧̆(𝑘)  is fitted to the 

multivariate autoregressive (AR) model of finite order N. 

𝑧̆(𝑘) = −𝑎1𝑧̆(𝑘 − 1) − 𝑎2𝑧̆(𝑘 − 2) ⋯ − 𝑎𝑁𝑧̆(𝑘 − 𝑁) + 𝑒(𝑘),

𝐸[𝑒(𝑘)𝑒𝑇(𝑠)] = 𝑄𝛿𝐾(𝑘 − 𝑠)
             (4) 

Let us introduce, among the multi-sensor observations for 𝑚 ≥ 2, the multi-sensor  

state 𝑥(𝑘) with components 𝑧̆1(𝑘), 𝑧̆2(𝑘), 𝑧̆3(𝑘), …, 𝑧̆𝑚(𝑘), 𝑧̆1(𝑘 + 1), 𝑧̆2(𝑘 + 1), …, 𝑧̆𝑚(𝑘 + 1), 
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⋯ , 𝑧̆1(𝑘 + 𝑁 − 2),  𝑧̆2(𝑘 + 𝑁 − 2),  ⋯ , 𝑧̆𝑚(𝑘 + 𝑁 − 2) , 𝑧̆1(𝑘 + 𝑁 − 1) , 𝑧̆2(𝑘 + 𝑁 − 1) , ⋯ ,        

𝑧̆𝑚(𝑘 + 𝑁 − 1). With the observation matrix 𝐻 and the state 𝑥(𝑘), we express the degraded 

multi-sensor signal 𝑧̆(𝑘) as:  

𝑧̆(𝑘) = 𝐻𝑥(𝑘), 𝐻 =
 

[𝐼𝑀∙𝑚×𝑀∙𝑚 0 ⋯ 0 0],

𝑥(𝑘) =

[
 
 
 
 

𝑧̆(𝑘)

𝑧̆(𝑘 + 1)
⋮

𝑧̆(𝑘 + 𝑁 − 2)

𝑧̆(𝑘 + 𝑁 − 1)]
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑧̆1(𝑘)

𝑧̆2(𝑘)
⋮

𝑧̆𝑚(𝑘)

𝑧̆1(𝑘 + 1)

𝑧̆2(𝑘 + 1)
⋮

𝑧̆𝑚(𝑘 + 1)
⋮

𝑧̆1(𝑘 + 𝑁 − 2)

𝑧̆2(𝑘 + 𝑁 − 2)
⋮

𝑧̆𝑚(𝑘 + 𝑁 − 2)

𝑧̆1(𝑘 + 𝑁 − 1)

𝑧̆2(𝑘 + 𝑁 − 1)
⋮

𝑧̆𝑚(𝑘 + 𝑁 − 1)]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.

 

                                 (5) 

From Eqs. (4) and (5), we see that the state equation for 𝑥(𝑘) satisfies: 

𝑥(𝑘 + 1) = Φ⃡  𝑥(𝑘) + Γ⃡𝑤⃡  (𝑘),

Φ⃡  =

[
 
 
 
 

0 𝐼𝑀∙𝑚×𝑀∙𝑚 0 ⋯ 0
0 0 𝐼𝑀∙𝑚×𝑀∙𝑚 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝐼𝑀∙𝑚×𝑀∙𝑚

−𝑎𝑁 −𝑎𝑁−1 −𝑎𝑁−2 ⋯ −𝑎1 ]
 
 
 
 

,

𝐸[𝑤⃡  (𝑘)𝑤⃡  𝑇(𝑠)] = 𝑄𝛿𝐾(𝑘 − 𝑠), 𝑤⃡  (𝑘) = 𝑒(𝑘 + 𝑁),

Γ⃡ =

[
 
 
 
 

0
0
⋮
0

𝐼𝑀∙𝑚×𝑀∙𝑚]
 
 
 
 

                              (6) 

with the system matrix Φ⃡   in the controllable canonical form. By using the auto-covariance 

function of the degraded multi-sensor signal 𝑧̆(𝑘), 𝐾̆(𝑘, 𝑠) = 𝐸[𝑧̆(𝑘)𝑧̆𝑇(𝑠)] = 𝐾(𝑖), 𝑖 = 𝑘 − 𝑠, 

0 ≤ 𝑖 ≤ 𝑁, the AR parameters, 𝑎𝑖 , 1 ≤ 𝑖 ≤ 𝑁, are calculated by the Yule-Walker equations 

[15].  

𝐾(𝑘, 𝑘)

[
 
 
 
 
 

𝑎1
𝑇

𝑎2
𝑇

⋮
𝑎𝑁−1

𝑇

𝑎𝑁
𝑇 ]

 
 
 
 
 

= −

[
 
 
 
 
 

𝐾̆𝑇(1)

𝐾̆𝑇(2)
⋮

𝐾̆𝑇(𝑁 − 1)

𝐾̆𝑇(𝑁) ]
 
 
 
 
 

           (7) 

Here, the auto-variance function 𝐾(𝑘, 𝑘) of the multi-sensor state 𝑥(𝑘) is given by: 

𝐾(𝑘, 𝑘) = 𝐸[𝑥(𝑘)𝑥𝑇(𝑘)] =

[
 
 
 
 
 

𝐾̆(0) 𝐾̆(1) ⋯

𝐾̆𝑇(1) 𝐾̆(0) ⋯
⋮ ⋮ ⋱

𝐾̆𝑇(𝑁 − 2) 𝐾̆𝑇(𝑁 − 3) ⋯

𝐾̆𝑇(𝑁 − 1) 𝐾̆𝑇(𝑁 − 2) ⋯

𝐾̆(𝑁 − 2) 𝐾̆(𝑁 − 1)

𝐾̆(𝑁 − 3) 𝐾̆(𝑁 − 2)
⋮ ⋮

𝐾̆(0) 𝐾̆(1)

𝐾̆𝑇(1) 𝐾̆(0) ]
 
 
 
 
 

.                   (8) 

Also, the cross-covariance function 𝐾𝑥𝑥(𝑘, 𝑠) = 𝐸[𝑥(𝑘)𝑥𝑇(𝑠)] of the state 𝑥(𝑘) with the state 

𝑥(𝑠) is given by: 
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𝐾𝑥𝑥(𝑘, 𝑠) = 𝛼(𝑘)𝛽𝑇(𝑠),0 ≤ 𝑠 ≤ 𝑘,

𝛼(𝑘) = Φ𝑘 , 𝛽𝑇(𝑠) = Φ−𝑠𝐾𝑥𝑥(𝑠, 𝑠).
                                   (9) 

Assume that the filtering estimate 𝑥(𝑘, 𝑘) of 𝑥(𝑘) is given by: 

𝑥(𝑘, 𝑘) = ∑ ℎ(𝑘, 𝑖)𝑘
𝑖=1 𝑦̆(𝑖)          (10) 

From the lemma of orthogonal projection [3], it follows that the optimal impulse response 

function ℎ(𝑘, 𝑠) satisfies: 

ℎ(𝑘, 𝑠)𝑅 = 𝐾𝑥𝑥(𝑘, 𝑠)𝐻𝑇 − ∑ ℎ(𝑘, 𝑖)𝐻𝑘
𝑖=1 𝐾(𝑖, 𝑘)𝐻𝑇       (11) 

In section 3, starting from Eq. (11), we obtain the centralized robust multi-sensor RLS 

Wiener filter of Chandrasekhar type. 

3. CENTRALIZED ROBUST MULTI-SENSOR RLS WIENER FILTERING 
ALGORITHM OF CHANDRASEKHAR TYPE  

Based on the preliminary assumptions on the centralized robust multi-sensor 

estimation problem in section 2, Theorem 1 introduces the centralized robust multi-sensor 

RLS Wiener filtering algorithm of Chandrasekhar type for estimating the signal 𝑧(𝑘) and the 

state 𝑥(𝑘) in linear wide-sense stationary stochastic systems with uncertain parameters in the 

system and observation matrices.  

Theorem 1: Let the state-space model for state 𝑥(𝑘) be given by Eq. (1). Let the state-space 

model with uncertain quantities ΔΦ(𝑘)  and Δ𝐻𝑖(𝑘) , i = 1, … , m,  be given by Eq. (2); the 

process of the degraded multi-sensor signal 𝑧̆(𝑘) be fitted to the AR model of the order N; the 

variance 𝐾(𝑘, 𝑘) of the multi-sensor state 𝑥(𝑘) and the cross-variance 𝐾𝑥𝑥(𝑘, 𝑘) of the state 

𝑥(𝑘) with the multi-sensor state 𝑥(𝑘) be given by Eqs. (8) and (9), respectively; the variance 

of the multi-sensor white observation noise 𝑣(𝑘) be 𝑅. Then, the centralized robust multi-

sensor RLS Wiener filtering algorithm of Chandrasekhar type for the signal 𝑧(𝑘) and the 

state 𝑥(𝑘) consists of Eqs. (12) to (20) in linear wide-sense stationary stochastic systems with 

the uncertain parameters in the system and observation matrices. 

Filtering estimate of signal 𝑧(𝑘): 𝑧̂(𝑘, 𝑘)  

𝑧̂(𝑘, 𝑘) = 𝐻𝑥(𝑘, 𝑘)            (12) 

Filtering estimate of the state 𝑥(𝑘), i. e.  𝑥(𝑘, 𝑘) 

𝑥(𝑘, 𝑘) = Φ𝑥(𝑘 − 1, 𝑘 − 1) + ℎ(𝑘, 𝑘)(𝑦̆(𝑘) − 𝐻Φ⃡  𝑥(𝑘 − 1, 𝑘 − 1)),
𝑥(0,0) = 0

     (13) 

Filter gain for 𝑥(𝑘, 𝑘) in Eq. (13), i. e. ℎ(𝑘, 𝑘)  

ℎ(𝑘, 𝑘) = [ℎ(𝑘 − 1, 𝑘 − 1) − Φℎ(𝑘 − 1,1)𝐻Φ⃡  ℎ̅(𝑘 − 1,1)]

× {𝐼 − 𝐻Φ⃡  ℎ̅(𝑘 − 1,1)𝐻Φ⃡  ℎ̅(𝑘 − 1,1)}−1
                                                          (14)  

Filtering estimate of 𝑥(𝑘) , i. e.  𝑥(𝑘, 𝑘)  

𝑥(𝑘, 𝑘) = Φ⃡  𝑥(𝑘 − 1, 𝑘 − 1) + ℎ̅(𝑘, 𝑘)(𝑦̆(𝑘) − 𝐻Φ⃡  𝑥(𝑘 − 1, 𝑘 − 1)),

𝑥(0,0) = 0
                                          (15) 

Filter gain for 𝑥(𝑘, 𝑘) in Eq. (15), i. e. ℎ̅(𝑘, 𝑘) 

ℎ̅(𝑘, 𝑘) = [ℎ̅(𝑘 − 1, 𝑘 − 1) − Φ⃡  ℎ̅(𝑘 − 1,1)𝐻Φ⃡  ℎ̅(𝑘 − 1,1)]

× {𝐼 − 𝐻Φ⃡  ℎ̅(𝑘 − 1,1)𝐻Φ⃡  ℎ̅(𝑘 − 1,1)}−1
                                                           (16) 

Update equation of ℎ(𝑘, 1) from ℎ(𝑘 − 1,1). 

ℎ(𝑘, 1) = Φℎ(𝑘 − 1,1) − ℎ(𝑘, 𝑘)𝐻Φ⃡  ℎ̅(𝑘 − 1,1)                                                                   (17) 

Update equation of ℎ̅(𝑘, 1) from ℎ̅(𝑘 − 1,1). 
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ℎ̅(𝑘, 1) = Φ⃡  ℎ̅(𝑘 − 1,1) − ℎ̅(𝑘, 𝑘)𝐻Φ⃡  ℎ̅(𝑘 − 1,1)                           (18) 

The Initial value of Eqs. (14) and (17), i. e. ℎ(1,1) 

ℎ(1,1) = 𝐾𝑥𝑥(1,1)𝐻𝑇(𝑅 + 𝐻𝐾(𝑘, 𝑘)𝐻𝑇)−1        (19) 

The Initial value of Eqs. (16) and (18), i. e. ℎ(1,1) 

ℎ̅(1,1) = 𝐾(1,1)𝐻𝑇(𝑅 + 𝐻𝐾(𝑘, 𝑘)𝐻𝑇)−1        (20) 

The Chandrasekhar-type centralized robust multi-sensor RLS filter of Theorem 1 is 

derived by applying the mathematical procedure developed in Eqs. (1 - 11) by Nakamori et 

al. [17]. The proof of Theorem 1 is deferred to the Appendix. 

For the stability of the Chandrasekhar type centralized robust multi-sensor RLS   

Wiener filter of Theorem 1, the following conditions are required: 1) 𝑅 + 𝐻𝐾(𝑘, 𝑘)𝐻𝑇and                  

𝐼 − 𝐻Φ⃡  ℎ̅(𝑘 − 1,1)𝐻Φ⃡  ℎ̅(𝑘 − 1,1)  are positive definite matrices; 2) The system matrix Φ  is 

stable; 3) The matrix Φ⃡  − ℎ̅(𝑘, 𝑘)𝐻Φ⃡    is stable. Conditions 2 and 3 indicate that all the 

eigenvalues of the matrices Φ and Φ⃡  − ℎ̅(𝑘, 𝑘)𝐻Φ⃡   lie inside the unit circle. 

Theorem 2: Let us apply the same assumptions of section 2 to the state-space model for the 

state 𝑥(𝑘), the uncertain quantities ΔΦ(𝑘) and Δ𝐻𝑖(𝑘), i = 1, … , m, the degraded multi-sensor 

signal 𝑧̆(𝑘) fitted to the AR model of order N, the variance 𝐾(𝑘, 𝑘) of the multi-sensor state 

𝑥(𝑘), the cross-variance 𝐾𝑥𝑥(𝑘, 𝑘) of the state 𝑥(𝑘) with 𝑥(𝑘) and the variance of the white 

multi-sensor observation noise 𝑣(𝑘). Then the centralized multi-sensor robust RLS Wiener 

filtering algorithm for the signal 𝑧(𝑘) and the state 𝑥(𝑘) consists of Eqs. (21) to (27) in linear 

wide-sense stationary stochastic uncertain systems [15]. 

Filtering estimate of signal 𝑧(𝑘), i. e. 𝑧̂(𝑘, 𝑘):  

𝑧̂(𝑘, 𝑘) = 𝐻𝑥(𝑘, 𝑘)            (21) 

Filtering estimate of the state 𝑥(𝑘), i. e.  𝑥(𝑘, 𝑘):  

𝑥(𝑘, 𝑘) = Φ𝑥(𝑘 − 1, 𝑘 − 1) + 𝐺(𝑘)(𝑦̆(𝑘) − 𝐻Φ⃡  𝑥(𝑘 − 1, 𝑘 − 1)),
𝑥(0,0) = 0

     (22) 

Filter gain for 𝑥(𝑘, 𝑘) in Eq. (22), i. e. 𝐺(𝑘):  

𝐺(𝑘) = [𝐾𝑥𝑧̆(𝑘, 𝑘) − Φ𝑆(𝑘 − 1)Φ⃡  𝑇𝐻𝑇]

× {𝑅 + 𝐻[𝐾(𝑘, 𝑘) − Φ⃡  𝑆0(𝑘 − 1)Φ⃡  𝑇]𝐻𝑇}−1,

𝐾𝑥𝑧̆(𝑘, 𝑘) = 𝐾𝑥𝑥(𝑘, 𝑘)𝐻𝑇

        (23) 

Filtering estimate of 𝑥(𝑘)  , i. e. 𝑥(𝑘, 𝑘):  

𝑥(𝑘, 𝑘) = Φ⃡  𝑥(𝑘 − 1, 𝑘 − 1) + 𝑔(𝑘)(𝑦̆(𝑘) − 𝐻Φ⃡  𝑥̂(𝑘 − 1, 𝑘 − 1)),

𝑥(0,0) = 0
      (24) 

Filter gain for 𝑥(𝑘, 𝑘) in Eq. (24), i.e.  𝑔(𝑘): 

𝑔(𝑘) = [𝐾(𝑘, 𝑘)𝐻𝑇 − Φ⃡  𝑆0(𝑘 − 1)Φ⃡  𝑇𝐻𝑇]

× {𝑅 + 𝐻[𝐾(𝑘, 𝑘) − Φ⃡  𝑆0(𝑘 − 1)Φ⃡  𝑇]𝐻𝑇}−1
        (25) 

Auto-variance function of 𝑥(𝑘, 𝑘):  

𝑆0(𝑘) = Φ⃡  𝑆0(𝑘 − 1)Φ⃡  𝑇 + 𝑔(𝑘)𝐻[𝐾(𝑘, 𝑘) − Φ⃡  𝑆0(𝑘 − 1)Φ⃡  𝑇],

𝑆0(0) = 0
     (26) 

Cross-variance function of 𝑥(𝑘, 𝑘) with 𝑥(𝑘, 𝑘):  

𝑆(𝑘) = Φ𝑆(𝑘 − 1)Φ⃡  𝑇 + 𝐺(𝑘)𝐻[𝐾(𝑘, 𝑘) − Φ⃡  𝑆0(𝑘 − 1)Φ⃡  𝑇],

𝑆(0) = 0
                  (27) 

Next, Theorem 3 shows the centralized multi-sensor RLS Wiener filtering algorithm. 
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Theorem 3: Suppose the state-space model for state 𝑥(𝑘)  is given by Eq. (1); then, the 

centralized multi-sensor RLS Wiener filtering algorithm consists of Eqs. (28) to (31). The 

centralized multi-sensor RLS Wiener filtering algorithm requires the information of the 

system matrix Φ, the observation matrix 𝐻, the auto-variance function 𝐾𝑥(𝑘, 𝑘) of 𝑥(𝑘), and 

the degraded multi-sensor observed value 𝑦̆(𝑘) in linear discrete-time wide-sense stationary 

stochastic systems [15].  

Filtering estimate of signal 𝑧(𝑘), i.e.  𝑧̂(𝑘, 𝑘):  

𝑧̂(𝑘, 𝑘) = 𝐻𝑥(𝑘, 𝑘)            (28) 

Filtering estimate of the state 𝑥(𝑘), i. e. 𝑥(𝑘, 𝑘):  

𝑥(𝑘, 𝑘) = Φ𝑥(𝑘 − 1, 𝑘 − 1) + 𝐺𝑥(𝑘)(𝑦̆(𝑘) − 𝐻Φ𝑥̂(𝑘 − 1, 𝑘 − 1)),
𝑥(0,0) = 0

     (29) 

Filter gain for 𝑥(𝑘, 𝑘) in Eq. (26), i. e. 𝐺𝑥(𝑘):   

𝐺𝑥(𝑘) = [(𝐾𝑥(𝑘, 𝑘) − Φ𝑆𝑥(𝑘 − 1)Φ𝑇)𝐻𝑇]

× {𝑅 + 𝐻[𝐾𝑥(𝑘, 𝑘) − Φ𝑆𝑥(𝐿 − 1)Φ𝑇]𝐻𝑇}−1        (30) 

The variance of the filtering estimate 𝑥(𝑘, 𝑘), i. e. 𝑆𝑥(𝑘): 

𝑆𝑥(𝑘) = Φ𝑆𝑥(𝑘 − 1)Φ𝑇 + 𝐺𝑥(𝑘)𝐻[𝐾𝑥(𝑘, 𝑘) − Φ𝑆𝑥(𝑘 − 1)Φ𝑇],
𝑆𝑥(0) = 0

      (31) 

In section 4, we present the recursive algorithm for the filtering error variance function 

of the state 𝑥(𝑘) for the centralized robust multi-sensor RLS Wiener filtering algorithm of 

Chandrasekhar type and show the existence of the state. 

4. COMPARISON OF THE NUMBER OF RECURSIVE EQUATIONS IN THEOREM 1, 
THEOREM 2, AND THEOREM 3 

The numbers of recursive equations contained in Theorem 1, Theorem 2, and Theorem 

3 are specified as follows. 

Theorem 1: Chandrasekhar-type centralized robust multi-sensor RLS Wiener filter of 

Theorem 1: 𝑁 ∙ 𝑀 ∙ 𝑚  for 𝑥(𝑘, 𝑘) ; 𝑁 ∙ 𝑀 ∙ 𝑚  for ℎ(𝑘, 𝑘) ; 𝑀2 ∙ 𝑁 ∙ 𝑚2  for 𝑥(𝑘, 𝑘) ; 𝑀2 ∙ 𝑁 ∙ 𝑚2         

for ℎ̅(𝑘, 𝑘) ; 𝑁 ∙ 𝑀 ∙ 𝑚  for ℎ(𝑘, 1)  and 𝑀2 ∙ 𝑁 ∙ 𝑚2  for ℎ̅(𝑘, 1) . The total number equals              

3𝑁 ∙ 𝑀 ∙ 𝑚+3𝑀2 ∙ 𝑁 ∙ 𝑚2   

Theorem 2: Centralized robust multi-sensor RLS Wiener filter of Theorem 2: 𝑀 ∙ 𝑁 ∙ 𝑚 for 

𝑥(𝑘, 𝑘); 𝑀2 ∙ 𝑁 ∙ 𝑚2 for 𝑥(𝑘, 𝑘); 𝑀2 ∙ 𝑁2 ∙ 𝑚2 for 𝑆0(𝑘)and 𝑀 ∙ 𝑁2 ∙ 𝑚 for 𝑆(𝑘). The total number 

is: 𝑀2 ∙ 𝑁2 ∙ 𝑚2 + 𝑀2 ∙ 𝑁 ∙ 𝑚2 + 𝑀 ∙ 𝑁2 ∙ 𝑚 + 𝑀 ∙ 𝑁 ∙ 𝑚 

Theorem 3: Centralized multi-sensor RLS Wiener filter of Theorem 3: 𝑀 ∙ 𝑁 ∙ 𝑚 for 𝑥(𝑘, 𝑘) 

and 𝑁2 for  𝑆𝑥(𝑘). The total number is: 𝑁2 + 𝑀 ∙ 𝑁 ∙ 𝑚 

The main reason the centralized robust RLS Wiener filter becomes unstable for 

multiple sensors is that 𝑆0(𝑘), updated by the algebraic Riccati equations becomes indefinite, 

e. g. 𝑆0(𝑘) < 0 [18]. This instability could be caused by the accumulation of the round-off 

errors in the computation of the Riccati equations for the symmetric matrix 𝑆0(𝑘). 𝑆0(𝑘) 

containing 𝑁 ∙ 𝑀 ∙ 𝑚 × 𝑁 ∙ 𝑀 ∙ 𝑚  equations. In the Chandrasekhar-type centralized robust 

multi-sensor RLS Wiener filter of Theorem 1, the filter gains ℎ(𝑘, 𝑘) for 𝑥(𝑘, 𝑘) and ℎ̅(𝑘, 𝑘) for 

𝑥(𝑘, 𝑘) are recursively updated by Eqs. (14) and (16) without algebraic Riccati equations. As 

explained in the numerical simulation example in section 6, the Chandrasekhar-type 

centralized robust multi-sensor RLS Wiener filter of Theorem 1 is stable for the relatively 
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small variance of the white Gaussian observation noise compared to the centralized robust 

multi-sensor RLS Wiener filter [15]. 

5. FILTERING ERROR VARIANCE FUNCTION FOR STATE 𝒙(𝒌) 

This section presents the recursive algorithm for the filtering error variance function 

𝑃𝑥̃(𝑘)  of the state 𝑥(𝑘)  in the Chandrasekhar-type centralized robust multi-sensor RLS 

Wiener filtering algorithm of Theorem 1. From Eq. (13), the variance 𝑃𝑥(𝑘, 𝑘) of the filtering 

estimate 𝑥(𝑘, 𝑘) is given by:  

𝑃𝑥(𝑘) = E[𝑥(𝑘, 𝑘)𝑥̂𝑇(𝑘, 𝑘)]

= ΦE[𝑥(𝑘 − 1, 𝑘 − 1)𝑥𝑇(𝑘 − 1, 𝑘 − 1)]Φ𝑇 + ℎ(𝑘, 𝑘)𝑃𝜈̌(𝑘)ℎ𝑇(𝑘, 𝑘)
  

= Φ𝑃𝑥(𝑘 − 1)Φ𝑇 + ℎ(𝑘, 𝑘)𝑃𝜈̌(𝑘)ℎ𝑇(𝑘, 𝑘)        (32) 

𝑃𝜈̌(𝑘) = 𝐸[𝜈̌(𝑘)𝜈̌(𝑘)𝑇(𝑘)], 𝜈̌(𝑘) = 𝑦̆(𝑘) − 𝐻Φ⃡  𝑥(𝑘 − 1, 𝑘 − 1).  

𝜈̌(𝑘) represents the innovation process. The variance of the innovation process  𝑃𝜈̌(𝑘) is  

expressed as: 

𝑃𝜈̌(𝑘) = E[(𝑦̆(𝑘) − 𝐻Φ⃡  𝑥̂(𝑘 − 1, 𝑘 − 1))(𝑦̆(𝑘) − 𝐻Φ⃡  𝑥̂(𝑘 − 1, 𝑘 − 1))𝑇]

             = 𝐻𝐾(𝑘, 𝑘)𝐻𝑇 + 𝑅 − 𝐻Φ⃡  𝑃𝑥
(𝑘 − 1)Φ⃡  𝑇𝐻𝑇 ,

    (33) 

𝑃𝑥
(𝑘) = 𝐸[𝑥(𝑘, 𝑘)𝑥̂𝑇(𝑘, 𝑘)]. 

Here, 𝑃𝑥
(𝑘) represents the variance of the filtering estimate 𝑥(𝑘, 𝑘). From Eq. (15), we have 

an expression for 𝑃𝑥
(𝑘) as follows.  

𝑃𝑥
(𝑘) = Φ⃡  𝑃𝑥

(𝑘 − 1)Φ⃡  + ℎ̅(𝑘, 𝑘)𝑃𝜈̌(𝑘)ℎ̅𝑇(𝑘, 𝑘).        (34) 

Hence, we get Eqs. (35) and (36): 

𝑃𝑥(𝑘) = Φ𝑃𝑥(𝑘 − 1)Φ𝑇 + ℎ(𝑘, 𝑘)[𝐻𝐾(𝑘, 𝑘)𝐻𝑇 + 𝑅 − 𝐻Φ⃡  𝑃𝑥̂
(𝑘 − 1)Φ⃡  𝑇𝐻𝑇]ℎ𝑇(𝑘, 𝑘)            (35)                               

      𝑃𝑥(0) = 0 

𝑃𝑥
(𝑘) = Φ⃡  𝑃𝑥

(𝑘 − 1)Φ⃡  + ℎ̅(𝑘, 𝑘)[𝐻𝐾(𝑘, 𝑘)𝐻𝑇 + 𝑅 − 𝐻Φ⃡  𝑃𝑥̂
(𝑘 − 1)Φ⃡  𝑇𝐻𝑇]ℎ̅𝑇(𝑘, 𝑘),   (36) 

      𝑃𝑥
(0) = 0. 

The filtering error variance function 𝑃𝑥̃(𝑘) of 𝑥(𝑘) is given by: 

𝑃𝑥̃(𝑘, 𝑘) = 𝐾𝑥(𝑘, 𝑘) − 𝑃𝑥(𝑘, 𝑘),          (37) 
where 𝐾𝑥(𝑘, 𝑘) represents the variance of the state 𝑥(𝑘). The recursive algorithm for the 

filtering error variance function 𝑃𝑥̃(𝑘) consists of Eqs. (14), (16-20), and (35-37).   

The variance 𝑃𝑥̃(𝑘) of the filtering estimate 𝑥(𝑘, 𝑘) of the state 𝑥(𝑘) is lower bounded 

by the zero matrix and upper bounded by the variance 𝐾𝑥(𝑘, 𝑘) of the state.  

    0 ≤ 𝑃𝑥(𝑘) ≤ 𝐾𝑥(𝑘, 𝑘) 

From this inequality, we see that the existence of the filtering estimate 𝑥(𝑘, 𝑘) of the 

state is shown. 

The following shows a numerical simulation example of the Chandrasekhar-type 

centralized robust multi-sensor RLS Wiener filter of Theorem 1. Its estimation characteristics 

are compared with the centralized robust multi-sensor RLS Wiener filter [15] and the 

centralized multi-sensor RLS Wiener filter [16]. 

6. A NUMERICAL SIMULATION EXAMPLE 

Suppose that the observation equations in the two-sensor information fusion network 

system and the state equation for 𝑥(𝑘) are described by: 
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      𝑦𝑖(𝑘) = 𝑧𝑖(𝑘) + 𝑣𝑖(𝑘), 𝑧𝑖(𝑘) = 𝐻𝑖𝑥(𝑘),𝑖 = 1,2, 

 𝑦(𝑘) = 𝑧(𝑘) + 𝑣(𝑘), 𝑧(𝑘) = 𝐻𝑥(𝑘), 𝐻 = [
𝐻1

𝐻2
] , 𝑥(𝑘) = [

𝑥1(𝑘)

𝑥2(𝑘)
], 

      𝐻1 = [1 −0.1], 𝐻2 = [0.1 1], 

𝑦(𝑘) = [
𝑦1(𝑘)
𝑦2(𝑘)

] , 𝑧(𝑘) = [
𝑧1(𝑘)

𝑧2(𝑘)
] = [

𝑥1(𝑘) − 0.1𝑥2(𝑘)

0.1𝑥1(𝑘) + 𝑥2(𝑘)
] , 𝑣(𝑘) = [

𝑣1(𝑘)
𝑣2(𝑘)

],                                 (38) 

 𝑥(𝑘 + 1) = Φ𝑥(𝑘) + Γ𝑤(𝑘), Φ = [
0 1

0.8 0.1
] , Γ = [

0
1
], 

 𝐸[𝑣(𝑘)𝑣(𝑠)] = 𝑅𝛿𝐾(𝑘 − 𝑠), 𝑅 = [
𝑅1 0
0 𝑅2

] , 𝑅1 = 𝑅2, 

 𝐸[𝑤(𝑘)𝑤(𝑠)] = 𝑄𝛿𝐾(𝑘 − 𝑠), 𝑄 = 0. 52.   

From 𝑚 = 2, 𝑀 = 1, and 𝑁 = 5, the total numbers of the recursive equations in Theorems 1, 2, 

and 3 are 90, 180, and 35, respectively. The number of Riccati-type equations for 𝑆0(𝑘) in 

Theorem 2 is 100 and that for 𝑆𝑥(𝑘) in Theorem 3 is 25. Suppose that the degraded observed 

value 𝑦̆(𝑘) is generated by the observation Eq. (39). Here, the degraded observation 𝑦̆(𝑘) has 

the two components 𝑦̆1(𝑘) and 𝑦̆2(𝑘). The degraded signal 𝑧̆(𝑘) has the components 𝑧̆1(𝑘) 

and 𝑧̆2(𝑘). 

𝑦̆(𝑘) = 𝑧̆(𝑘) + 𝑣(𝑘), 𝑧̆(𝑘) = 𝐻̆(𝑘)𝑥̆(𝑘), 𝑦̆(𝑘) = [
𝑦̆1(𝑘)

𝑦̆2(𝑘)
] , 𝑧̆(𝑘) = [

𝑧̆1(𝑘)
𝑧̆2(𝑘)

] ,

𝐻̆(𝑘) = [
𝐻̆1(𝑘)

𝐻̆2(𝑘)
] , 𝑥̆(𝑘) = [

𝑥̆1(𝑘)

𝑥̆2(𝑘)
]

    (39) 

We assume that the state-space model contains uncertain quantities ∆H𝑖(𝑘), 𝑖 = 1,2, and 

ΔΦ(𝑘) as shown in Eq. (40). 

𝑦̆𝑖(𝑘) = 𝑧̆𝑖(𝑘) + 𝑣𝑖(𝑘), 𝑧̆𝑖(𝑘) = 𝐻̆𝑖(𝑘)𝑥̆(𝑘),

𝑥̆(𝑘 + 1) = Φ̆(𝑘)𝑥̆(𝑘) + Γ𝑤(𝑘),

Φ̆(𝑘) = Φ + ∆Φ(𝑘), 𝐻̆𝑖(𝑘) = 𝐻𝑖 + ∆H𝑖(𝑘), 𝑖 = 1,2,

, 

ΔΦ(𝑘) = [
0 0

0.2𝜁1(𝑘) 0.1𝜁2(𝑘)],                                                                                                    (40) 

∆H1(𝑘) = [0.1𝜁3(𝑘) 0], ∆H2(𝑘) = [0.05𝜁4(𝑘) 0]  

It should be noted that the centralized robust multi-sensor RLS Wiener filter of 

Chandrasekhar type, the centralized robust multi-sensor RLS Wiener filter and the multi-

sensor RLS Wiener filter do not use the information of the uncertain quantities. Here, 𝜁𝑖(𝑘), 

i = 1,2, … ,4,  are mutually independent uniformly distributed random variables, which 

ranges between 0 and 1. Suppose that the degraded multi-sensor signal 𝑧̆(𝑘) is approximated 

with the multivariate AR model in Eq. (4) of the order N = 5. In this case, the multi-sensor 

state 𝑥(𝑘) of Eq. (5) has 10 vector components. 

By substituting 𝐻 , Φ, 𝐻 , Φ⃡  , 𝐾(𝐿, 𝐿), 𝐾𝑥𝑥(𝑘, 𝑘)  and 𝑅  into Theorem 1, the centralized 

robust multi-sensor RLS Wiener filter of Chandrasekhar type recursively calculates the 

estimates of the states 𝑥1(𝑘) and 𝑥2(𝑘). Here, 𝐾(𝐿, 𝐿) and 𝐾𝑥𝑥(𝑘, 𝑘) are computed with the 

data of 𝑥(𝑘) and  𝑥(𝑘); 1 ≤ k ≤ 350. Fig. 1 illustrates the state 𝑥1(k) and its filtering estimate 

𝑥1(𝑘, 𝑘) vs. time 𝑘 by the Chandrasekhar-type centralized robust multi-sensor RLS Wiener 

filter of Theorem 1 for the white Gaussian observation noise N(0,0. 52). Fig. 2 illustrates the 

state 𝑥2(k) and its filtering estimate 𝑥2(k, k) vs. time 𝑘 by the centralized robust multi-sensor 

RLS Wiener filter of Chandrasekhar type for the white Gaussian observation noise N(0,0. 52). 

The centralized robust multi-sensor RLS Wiener filter uses the same information as the 

centralized robust multi-sensor RLS Wiener filter of Chandrasekhar type. The centralized 
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multi-sensor RLS Wiener filter of Theorem 3 uses the information Φ , 𝐻  and the auto-  

variance function of the state 𝑥(𝑘) , 𝐾𝑥(𝑘, 𝑘) . Here, the relationship 𝐾𝑥(𝑘, 𝑘) = 𝐾𝑥(0)          

holds from the wide-sense stationarity. 𝐾𝑥(𝑘, 𝑘)  is computed iteratively by                                           

𝐾𝑥(𝑘 + 1, 𝑘 + 1) = Φ𝐾𝑥(𝑘, 𝑘)Φ𝑇 + ΓQΓ𝑇, with the initial value 𝐾𝑥(𝑘, 𝑘) = 02×2, until 𝐾𝑥(𝑘, 𝑘) 

arrives at its stationary value.  
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Fig. 1. Filtering estimate 𝑥̂1(𝑘, 𝑘) by the Chandrasekhar-type centralized robust multi-sensor RLS Wiener filter of 

Theorem 1 vs. k for the white Gaussian observation noise N(0,0. 52). 
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Fig. 2. Filtering estimate 𝑥̂2(𝑘, 𝑘) by the Chandrasekhar-type centralized robust multi-sensor RLS Wiener filter of 

Theorem 1 vs. k for the white Gaussian observation noise N(0,0. 52). 

 

Table 1 compares the MSVs of the filtering errors of x2(k) between the Chandrasekhar-

type centralized robust multi-sensor RLS Wiener filter of Theorem 1, the centralized robust 



299                           © 2021 Jordan Journal of Electrical Engineering. All rights reserved - Volume 7, Number 3, September 2021 

 

 

multi-sensor RLS Wiener filter [15] and the centralized multi-sensor RLS Wiener filter [16] 

for the white Gaussian observation noises N(0,0. 22) and N(0,0. 32). From Table 1 the MSVs 

of the filtering errors by the centralized robust multi-sensor RLS Wiener filter of 

Chandrasekhar type are smaller than those of the filtering errors by the centralized multi-

sensor RLS Wiener filter [16] for the white Gaussian observation noises, N(0,0. 22)  and 

N(0,0. 32), respectively. The MSVs of the filtering errors by the centralized robust multi-

sensor RLS Wiener filter [15] are large for the white Gaussian observation noises, N(0,0. 22) 

and N(0,0. 32), respectively. These results show that the centralized robust multi-sensor RLS 

Wiener filter of Chandrasekhar type is effective in estimation accuracy, for the relatively 

small variance of the observation noise, against the instability of the centralized robust multi-

sensor RLS Wiener filter. 

 
Table 1. MSVs of filtering errors of x2(k) for different types of centralized multi-sensor RLS Wiener filters. 

Observation 
noise 

MSVs of filtering errors 

Chandrasekhar-type centralized 
robust multi-sensor RLS Wiener 

filter of Theorem 1 

centralized robust multi-
sensor RLS Wiener filter 

[15] 

centralized multi-
sensor RLS Wiener 

filter [16] 

N(0,0. 22) 0.0937 9.4690e+005 0.2441 

N(0,0. 32) 0.1171 2.2048e+005 0.2170 

 
Fig. 3 shows the MSVs of the filtering errors of 𝑥1(𝑘)  by the Chandrasekhar-type 

centralized robust multi-sensor RLS Wiener filter of Theorem 1, the centralized robust multi-

sensor RLS Wiener filter [15] and the centralized multi-sensor RLS Wiener filter [16]. The 

MSVs of the filtering errors by the centralized robust multi-sensor RLS Wiener filter of 

Chandrasekhar type and the centralized robust multi-sensor RLS Wiener filter are smaller 

than those of the centralized multi-sensor RLS Wiener filter. Also, the MSVs of the filtering 

errors by the centralized robust multi-sensor RLS Wiener filter of Chandrasekhar type and 

the centralized robust multi-sensor RLS Wiener filter are almost the same. 
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Fig. 3. MSVs of filtering errors of 𝑥1(𝑘) vs. variance of white Gaussian observation noise by different types of 

centralized multi-sensor RLS Wiener filters. 
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Fig. 4 shows the MSVs of the filtering errors of 𝑥2(𝑘) by the Chandrasekhar-type 

centralized robust multi-sensor RLS Wiener filter of Theorem 1, the centralized robust multi-

sensor RLS Wiener filter [15] and the centralized multi-sensor RLS Wiener filter [16]. The 

MSVs of the filtering errors by the centralized robust multi-sensor RLS Wiener filter of 

Chandrasekhar type and the centralized robust multi-sensor RLS Wiener filter are smaller 

than those of the centralized multi-sensor RLS Wiener filter. Also, the MSVs of the filtering 

errors by the centralized robust multi-sensor RLS Wiener filter of Chandrasekhar type and 

the centralized robust multi-sensor RLS Wiener filter are almost the same.  
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Fig. 4. Mean-square values of filtering errors of 𝑥2(𝑘) by different types of centralized multi-sensor RLS        

Wiener filters. 

7. CONCLUSIONS 

This paper proposed, in Theorem 1, the centralized robust multi-sensor RLS Wiener 

filtering algorithm of Chandrasekhar type for the signal and the state in linear discrete-time 

wide-sense stationary stochastic systems with uncertain parameters.  

In the Chandrasekhar-type centralized robust multi-sensor RLS Wiener filter of 

Theorem 1, the filter gains ℎ(𝑘, 𝑘) for 𝑥(𝑘, 𝑘) and ℎ̅(𝑘, 𝑘) for 𝑥(𝑘, 𝑘) are recursively updated 

by Eqs. (14) and (16) without algebraic Riccati equations. From the numerical simulation 

example in section 6, the Chandrasekhar-type centralized robust multi-sensor RLS Wiener 

filter of Theorem 1 is stable in comparison with the centralized robust multi-sensor RLS 

Wiener filter for relatively small variance of the white Gaussian observation noise. The MSVs 

of the filtering errors by the centralized robust multi-sensor RLS Wiener filter are large for 

the white Gaussian observation noises  N(0,0. 22) and N(0,0. 32), respectively. Interestingly, 

the centralized robust multi-sensor RLS Wiener filter of Chandrasekhar type is effective in 

estimation accuracy, for the relatively small variance of the observation noise, against the 

instability of the centralized robust multi-sensor RLS Wiener filter. 
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APPENDIX  

Proof of Theorem1: 

The optimal impulse response function ℎ(𝑘, 𝑠) satisfies Eq. (11). Putting 𝑘 → 𝑘 − 1 and 

s → 𝑠 − 1, we have 

ℎ(𝑘 − 1, 𝑠 − 1)𝑅 = 𝐾𝑥𝑥(𝑘 − 1, 𝑠 − 1)𝐻𝑇 − ∑ ℎ(𝑘 − 1, 𝑖)𝐻𝑘−1
𝑖=1 𝐾(𝑖, 𝑠 − 1)𝐻𝑇            (A-1) 

Subtracting Eq. (A-1) from Eq. (11), we have 

(ℎ(𝑘, 𝑠) − ℎ(𝑘 − 1, 𝑠 − 1)𝑅 = −ℎ(𝑘, 1)𝐻𝐾(1, 𝑠)𝐻𝑇

− ∑ (ℎ(𝑘, 𝑖) − ℎ(𝑘 − 1, 𝑖))𝑘
𝑖=2 𝐻𝐾(𝑖, 𝑠)𝐻𝑇 − ℎ(0,1)𝐻𝐾(1, 𝑠 − 1)𝐻𝑇

                          (A-2) 

     −ℎ(𝑘, 1)𝐻𝐾(1, 𝑠)𝐻𝑇 − ∑ (ℎ(𝑘, 𝑖) − ℎ(𝑘 − 1, 𝑖))
𝑘

𝑖=2
𝐻𝐾(𝑖, 𝑠)𝐻𝑇 

Here, ℎ(0,1)=0 is used. Introducing a function 𝐽(k, s), which satisfies 

𝐽(𝑘, 𝑠)𝑅 = 𝐻𝐾(1, 𝑠)𝐻𝑇 − ∑ 𝐽(𝑘, 𝑖)𝐻𝑘
𝑖=2 𝐾(𝑖, 𝑠)𝐻𝑇 ,                 (A-3) 

we obtain 

ℎ(𝑘, 𝑠) − ℎ(𝑘 − 1, 𝑠 − 1) = −ℎ(𝑘, 1)𝐽(𝑘, 𝑠)                  (A-4) 

Let’s introduce a function ℎ̅(𝑘, 𝑠), which satisfies 

ℎ̅(𝑘, 𝑠)𝑅 = 𝐾(𝑘, 𝑠)𝐻𝑇 − ∑ ℎ̅(𝑘, 𝑖)𝐻𝑘
𝑖=1 𝐾(𝑖, 𝑠)𝐻𝑇 .                 (A-5) 

Putting 𝑘 → 𝑘 − 1 and pre-multiplying 𝐻Φ⃡   on both sides of Eq. (A-5), we get  

𝐻Φ⃡  ℎ̅(𝑘 − 1, 𝑠)𝑅 = 𝐻𝐾(𝑘, 𝑠)𝐻𝑇 − 𝐻Φ⃡  ∑ ℎ̅(𝑘 − 1, 𝑖)𝐻𝑘−1
𝑖=1 𝐾(𝑖, 𝑠)𝐻𝑇 .               (A-6) 

Putting s → 𝑘 − 𝑠 + 1 in Eq. (A-6), from the stationarity of 𝐾(𝑘, 𝑠), we have 

𝐻Φ⃡  ℎ̅(𝑘 − 1, 𝑘 − 𝑠 + 1)𝑅 = 𝐻𝐾(1, 𝑠)𝐻𝑇 − 𝐻Φ⃡  ∑ ℎ̅(𝑘 − 1, 𝑘 − 𝑖 + 1)𝐻𝑘
𝑖=2 𝐾(𝑖, 𝑠)𝐻𝑇.           (A-7) 

From Eqs. (A-3) and (A-7), it follows that 

𝐽(𝑘, 𝑠) = 𝐻Φ⃡  ℎ̅(𝑘 − 1, 𝑘 − 𝑠 + 1), 2 ≤ 𝑠 ≤ 𝑘.                 (A-8) 

From Eq. (A-4), it is clear that 

ℎ(𝑘, 𝑘) − ℎ(𝑘 − 1, 𝑘 − 1) = −ℎ(𝑘, 1)𝐽(𝑘, 𝑘) − ℎ(𝑘, 1)𝐻Φ⃡  ℎ̅(𝑘 − 1,1)             (A-9) 

Putting 𝑘 → 𝑘 − 1 in Eq. (A-5), we have 

ℎ̅(𝑘 − 1, 𝑠)𝑅 = 𝐾(𝑘 − 1, 𝑠)𝐻𝑇 − ∑ ℎ̅(𝑘 − 1, 𝑖)𝐻𝑘−1
𝑖=1 𝐾(𝑖, 𝑠)𝐻𝑇 .             (A-10) 

From Eqs. (A-5) and (A-10), we have 

    (ℎ̅(𝑘, 𝑠) − Φ⃡  ℎ̅(𝑘 − 1, 𝑠)𝑅 = 

−ℎ̅(𝑘, 𝑘)𝐻𝐾(𝑘, 𝑠)𝐻𝑇 − ∑ (ℎ̅(𝑘, 𝑖) − ℎ̅(𝑘 − 1, 𝑖))𝐻𝑘−1
𝑖=1 𝐾(𝑖, 𝑠)𝐻𝑇.             (A-11) 

From Eqs. (A-10) and (A-11), it is seen that 

ℎ̅(𝑘, 𝑠) − Φ⃡  ℎ̅(𝑘 − 1, 𝑠) = −ℎ̅(𝑘, 𝑘)𝐻Φ⃡  ℎ̅(𝑘 − 1, 𝑠).               (A-12) 

Hence, we obtain 

ℎ̅(𝑘, 1) = Φ⃡  ℎ̅(𝑘 − 1,1) − ℎ̅(𝑘, 𝑘)𝐻ℎ̅(𝑘 − 1,1).               (A-13) 

Putting 𝑘 → 𝑘 − 1 and 𝑠 → 𝑠 − 1 in Eq. (A-5), we have 

ℎ̅(𝑘 − 1, 𝑠 − 1)𝑅 = 𝐾(𝑘 − 1, 𝑠 − 1)𝐻𝑇 − ∑ ℎ̅(𝑘 − 1, 𝑖)𝐻𝑘−1
𝑖=1 𝐾(𝑖, 𝑠 − 1)𝐻𝑇 .            (A-14) 

Subtracting Eq. (A-14) from Eq. (A-5), we have 

     (ℎ̅(𝑘, 𝑠) − ℎ̅(𝑘 − 1, 𝑠 − 1)) 𝑅 = 

−ℎ̅(𝑘, 1)𝐻𝐾(1, 𝑠)𝐻𝑇 − ∑ (ℎ̅(𝑘, 𝑖) − ℎ̅(𝑘 − 1, 𝑖))𝐻𝑘
𝑖=2 𝐾(𝑖, 𝑠)𝐻𝑇 .             (A-15) 

From Eqs. (A-3), (A-8), and (A-15), it follows that 

ℎ̅(𝑘, 𝑠) − ℎ̅(𝑘 − 1, 𝑠 − 1) = −ℎ̅(𝑘, 1)𝐽(𝑘, 𝑠) = −ℎ̅(𝑘, 1)𝐻Φ⃡  ℎ̅(𝑘 − 1, 𝑘 − 𝑠 + 1).           (A-16) 

Putting 𝑠 → 𝑘 in Eq. (A-16), we obtain 
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ℎ̅(𝑘, 𝑘) = ℎ̅(𝑘 − 1, 𝑘 − 1) − ℎ̅(𝑘, 1)𝐻Φ⃡  ℎ̅(𝑘 − 1,1).               (A-17) 

The initial condition of the recursions for ℎ̅(𝑘, 1) in Eq. (A-13) and ℎ̅(𝑘, 𝑘) in Eq. (A-17) 

is ℎ̅(1,1). From Eq. (A-5), ℎ̅(1,1) is given by: 

ℎ̅(1,1) = 𝐾(1,1)𝐻𝑇(𝑅 + 𝐻𝐾(1,1)𝐻𝑇)−1.                (A-18) 

Putting 𝑘 → 𝑘 − 1 in Eq. (11), we have 

ℎ(𝑘 − 1, 𝑠)𝑅 = 𝐾𝑥𝑥(𝑘 − 1, 𝑠)𝐻𝑇 − ∑ ℎ(𝑘 − 1, 𝑖)𝐻𝑘−1
𝑖=1 𝐾(𝑖, 𝑠)𝐻𝑇            (A-19) 

From Eqs. (11) and (A-19), we have 

(ℎ(𝑘, 𝑠) − Φℎ(𝑘 − 1, 𝑠))𝑅 = 𝐾𝑥𝑥(𝑘, 𝑠)𝐻𝑇 − Φ𝐾𝑥𝑥(𝑘 − 1, 𝑠)𝐻𝑇 − ℎ(𝑘, 𝑘)𝐻𝐾(𝑘, 𝑠)𝐻𝑇 −

                                                            ∑ (ℎ(𝑘, 𝑖) − ℎ(𝑘 − 1, 𝑖))𝐻𝑘−1
𝑖=1 𝐾(𝑖, 𝑠)𝐻𝑇           (A-20) 

From Eqs. (A-6) and (A-20), we get 

ℎ(𝑘, 𝑠) = Φℎ(𝑘 − 1, 𝑠) − ℎ(𝑘, 𝑘)𝐻Φ⃡  ℎ̅(𝑘 − 1, 𝑠)               (A-21) 

Putting 𝑠 → 1, we obtain 

ℎ(𝑘, 1) = Φℎ(𝑘 − 1,1) − ℎ(𝑘, 𝑘)𝐻Φ⃡  ℎ̅(𝑘 − 1,1)               (A-22) 

The initial condition of the recursions for ℎ(𝑘, 𝑘) in Eq. (A-9) and ℎ(𝑘, 1) in Eq. (A-22) is 

ℎ(1,1). From Eq. (11) ℎ(1,1) is given by 

ℎ(1,1) = 𝐾𝑥𝑥(1,1)𝐻𝑇(𝑅 + 𝐻𝐾(1,1)𝐻𝑇)−1.                (A-23) 

From Eqs. (A-9) and (A-22), we obtain Eq. (14). From Eqs. (A-13) and (A-17), we obtain Eq. 

(16).                                       

The filtering estimate  𝑥(𝑘, 𝑘) of 𝑥(𝑘) is given by Eq. (10). Using Eq. (A-21), we rewrite 

Eq. (10) as follows. 

 𝑥(𝑘, 𝑘) = ℎ(𝑘, 𝑘)𝑦̆(𝑘) + ∑ ℎ(𝑘, 𝑖)𝑘−1
𝑖=1 𝑦̆(𝑖) 

= ℎ(𝑘, 𝑘)𝑦̆(𝑘) + Φ ∑ ℎ(𝑘 − 1, 𝑖)

𝑘−1

𝑖=1

𝑦̆(𝑖) − ℎ(𝑘, 𝑘)𝐻Φ⃡  ∑ ℎ̅(𝑘 − 1, 𝑖)

𝑘−1

𝑖=1

𝑦̆(𝑖) 

                 =Φ𝑥(𝑘 − 1, 𝑘 − 1)+ ℎ(𝑘, 𝑘)(𝑦̆(𝑘)-𝐻Φ⃡  𝑥̂(𝑘 − 1, 𝑘 − 1))             (A-24) 

Initial condition on the recursive equation for the filtering estimate 𝑥(𝑘, 𝑘) at 𝑘 = 0 is 

𝑥(0,0) = 0 from Eq. (10). By the way, ℎ̅(𝑘, 𝑠) in Eq. (A-5) is used to calculate the filtering 

estimate 𝑥(𝑘, 𝑘) of  𝑥(𝑘) as  

𝑥(𝑘, 𝑘) = ∑ ℎ̅(𝑘, 𝑖)𝑘
𝑖=1 𝑦̆(𝑖)                  (A-25) 

Substituting Eq. (A-12) into Eq. (A-25), we obtain 

 𝑥(𝑘, 𝑘) = ℎ̅(𝑘, 𝑘)𝑦̆(𝑘) + ∑ ℎ̅(𝑘, 𝑖)𝑘−1
𝑖=1 𝑦̆(𝑖) 

= ℎ̅(𝑘, 𝑘)𝑦̆(𝑘) + Φ⃡  ∑ ℎ̅(𝑘 − 1, 𝑖)

𝑘−1

𝑖=1

𝑦̆(𝑖) − ℎ̅(𝑘, 𝑘)𝐻Φ⃡  ∑ ℎ̅(𝑘 − 1, 𝑖)

𝑘−1

𝑖=1

𝑦̆(𝑖) 

                 =Φ𝑥(𝑘 − 1, 𝑘 − 1)+ ℎ̅(𝑘, 𝑘)(𝑦̆(𝑘)-𝐻Φ⃡  𝑥̂(𝑘 − 1, 𝑘 − 1)).                                        (A-26) 

Initial condition on the recursive equation for the filtering estimate 𝑥(𝑘, 𝑘) at 𝑘 = 0 is 

𝑥(0,0) = 0 from Eq. (A-25). 
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